

SA WG2 Temporary Document
Page 6

SA WG2 Meeting #129	S2-1811296
15 - 19 October 2018, Dongguan, P. R. China	(revision of S2-1810733)
Source:	NTT DOCOMO
Title:	Evaluation of the solutions for bindings between the service instances
Document for:	Approval
Agenda Item:	6.19
Work Item / Release:	FS_eSBA / Rel-16
Abstract of the contribution: This document proposes evaluation and interim conclusions for the solutions for bindings between the service instances on Key Issue 4.
1. 	Proposal
It is proposed to add the solution below in TR 23.742

*** Start of changes ****

[bookmark: _Toc523749569]6.9	Solution 9: Temporary bindings between the service instances
[bookmark: _Toc523749570]6.9.1	Introduction
Editor's note:	This clause lists the key issue(s) addressed by this solution.
This solution is to address the Key Issue 4 and in particular the impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances.
One requirement for 5GS architecture in Release 16 is to support a design paradigm of stateless service instances; where any service instance in the cluster of instances can process the service request, and where the selected service instance after processing the task stores the session data externally (e.g. in UDSF). Thus no binding relations should exist between individual service instances. The service instances should not store the instance ID or IP address of the other service instance after the service request has been completed. The aspects of stateless service instances are not part of this solution, but corresponding solutions are provided e.g. in Solutions 7 and 8.
However, in 5GS some e2e signalling flows consist of a sequence of services and/or service operations between the same Network Functions. For example, in Release 15 in UE Requested PDU Session Establishment (clause 4.3.2.2 in TS 23.502 [3]), typically four service operations are performed in sequence between AMF and SMF: Nsmf_PDUSession_CreateSMContext, Namf_Communication_N1N2MessageTransfer, Nsmf_PDUSession_UpdateSMContext and Namf_EventExposure_Subscribe. In stateless design, if the service instances would need to store and retrieve the session state (UE context) from an external storage (UDSF) between all of the above transactions, this causes unnecessary processing delay. Therefore, in scenarios where the next service operation is expected to come soon quickly after the previous operation is completed, it must be possible temporarily to store the session state locally and force the counterpart service instance to re-use the same service instance of the provider for the next service operation. The temporary binding between instances is short-living; the binding is released immediately once the sequence of service invocations that require stateful operation has been completed.
This solution provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings. The solution can be seen to complement the Solutions in 7 and 8.
This solution does not define a mechanism to setup bindings with service instance sets as described e.g. in Solutions 10, 11, 14 and 16. The binding with service instance set is typically long-living, it exists e.g. for the whole lifetime of the PDU Session. Temporary, short-living binding with the instances and long-living binding with the service instance sets are complementary mechanisms.

[bookmark: _Toc523749571]6.9.2	High-level Description
Editor's note:	This clause outlines solution principles, assumptions and high-level architectures, etc.
The solution assumes that the service instances may become stateless in this case the old service instance and new service instance of the session are able to share the session data e.g. via UDSF. How do they share the data is not part of this solution.
The following figures describe the principles in the solution. The first figure describes how the service provider is able to establish a temporary binding as part of the service response.

Figure 6.9.2-1: Creating the binding in Service Response
1.	Service consumer initiates a service request for Service1 (S1). As there is no prior binding between the service instances, the service consumer discovers the service instance of S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of service instance 1 (IID1). Service consumer targets the service request to IID1.
2.	Instance IID1 wants to create a temporary binding with service consumer, and returns the binding information in the service response. The binding information includes the Service S1 and the corresponding Instance ID.
3.	For the next service operation with the same service, the service consumer does not discover the service instance but instead uses the IID1 as a target for the service requests. Note that service consumer instance in step 1 can be stateless and therefore a new consumer instance is used in step 3.
4.	The Instance IID1 responds with an indication that the binding with the Service S1 can be released.
5.	(Optional) As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.
6.	Next time the NF consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
The next figure describes how the service consumer is able to establish a temporary binding as part of the service request.

Figure 6.9.2-2: Creating the binding in Service Request
1.	Service consumer initiates a service operation for Service 1 (S1). As there is no prior binding between the service instances, the service consumer discovers the instance of service provider for S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of IIDx. Service consumer targets the service request to IIDx.
	As service consumer wants to establish a temporary binding with IID1, it indicates the list of services and the corresponding Instance ID of the service instance that provides this service.
2.	The IIDx sends a service response.
3.	Next time the service instance of IIDx needs to send a service operation with the indicated service in step 1, the service consumer does not discover the service instance for the S1, but instead uses the indicated service instance as a target for the service requests (IID1 in this example). Note that service provider instance in step 1 can be stateless and therefore a new service consumer instance is used in step 3.
4.	The IID1 responds with an indication that the binding to S1 can be released.
5.	As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.
6.	Next time the service consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
When following procedure describes how the solution can be used together with the Service Framework that provides the service discovery, as described in Solution 8. The Communication Service within the Service Framework provides service instance discovery and routing management between the service instances. The flow in the clause 6.8.3.2 is used as a baseline.

Figure 6.9.2-3: Using this solution together with the Service Framework of Solution 8
1.	The Service Framework receives a Request from a service consumer requesting a particular Service. If there is an existing temporary binding to a particular service instance of the NF Service X, the request includes the Instance ID of the service instance of NF Service X as a target of the request.
	If the service provider instance that acts as a service consumer in Step 1 wants to establish a temporary binding as part of the service request, it indicates the list of services it provides, and the corresponding Instance ID.
2.	The Service Framework selects the instance serving the Request. If the request in Step 1 includes the target Instance ID, the Service Framework resolves the endpoint address for the target Instance ID.
3.	The Service Framework forwards the request to the service instance.
4.	a-c. As in Solution 8. This step can be skipped when there is an existing binding to a particular service instance of the NF Service X.
5.	a-c. As in Solution 8. This step can be skipped when there is an existing binding to a particular service instance of the NF Service X.
6.	The NF Service processes the message for the NF service.
7-8.	If there was an existing temporary binding for the service instance of NF Service X, the response can indicate that this binding is now released. In this case, the service instance of NF Service X can update the relevant data in Shared Data Layer and unlock the context for another service instance. The context includes the possible temporary bindings established as part of the service request in Step 1.
	If there was no existing temporary binding for the service instance of NF Service X and the service instance wants to create a temporary binding as part of the response, the response indicates the list of services and the corresponding Instance ID of the service instance that provides each service. In this case, the service instance of NF Service X does not unlock the context for another service instance in Shared Data Layer.
[bookmark: _Toc523749572]6.9.3	Illustrated Procedures
Editor's note:	This clause describes related high-level procedures for the solution.
The figure below shows an example flow how the mechanisms described in this solution can be applied to the communication between AMF and SMF in UE Requested PDU Session establishment procedure so that temporary binding can be created between the service instances of AMF and SMF.

Figure 6.9.3-1: The solution applied to PDU Session Establishment procedure
1.	The AMF instance which was initiated to process the PDU Session Establishment Request discovers the SMF instance for PDUSession service from NRF. The NRF provides the Instance ID of the selected service instance. The AMF targets the Nsmf_PDUSession_CreateSMContext Request to the instance IID2 of the SMF. The AMF includes in the request an Instance ID and an indication of the service(s) for which this instance ID must be used. In this example the AMF indicates it wants the AMF Instance IID1 to be used to request Namf_Communication service. The SMF stores the AMF instance ID and the service(s) associated to the AMF Instance ID.
2.	The SMF responds with the Nsmf_PDUSession_CreateSMContext Response. SMF provides the SM Context identifier. The SM context identifier shall not include the IP address of the SMF service instance. The SMF includes in the response an indication that the same SMF Instance of IID2 must be used with the upcoming Nsmf_PDUSession service operations.
3.	The SMF reserves the resources from the UPF. As SMF received the AMF Instance ID (IID1) in step 1, the SMF uses the Instance ID to resolve the IP address of the AMF service instance IID1 The SMF sends Namf_Communication_N1N2MessageTransfer Request to this AMF service instance.
4.	The AMF responds with the Namf_Communication_N1N2MessageTransfer Response. In this example the AMF does not update the binding information so the binding with Instance ID provided in step 1 continues, and must be used for possible upcoming Namf_Communication service operations.
5.	The RAN responds to AMF with the N2 message including the N3 Tunnel Information. As the AMF received the SMF Instance ID in step 2, the AMF uses the Instance ID to resolve the IP address of the SMF service instance IID2. The AMF sends the Nsmf_PDUSession_UpdateSMContext Request to the corresponding IP address. In typical scenario the AMF includes an indication that the previous binding of Namf_Communication service with IID1 can now be released, so the SMF knows to use the NRF to discover the AMF instance for any further service requests for Namf_Communication service. This ensures that when the SMF needs to trigger the release of the PDU Session, the SMF targets the related Namf_Communication_N1N2MessageTransfer service operation to the AMF instance discovered via NRF, and not to the same Instance of IID1 indicated in step 1.
6.	The SMF responds with the Nsmf_PDUSession_UpdateSMContext Response. In this example the SMF indicates that the binding to Instance ID of IID2 provided in step 2 shall be released, so the AMF knows to use the NRF to discover the SMF for any further service request of Nsmf_PDUSession service.
7.	The SMF subscribes to the UE mobility event notification from the AMF (e.g. location reporting, UE moving into or out of Area Of Interest), by invoking Namf_EventExposure_Subscribe service operation. As the AMF has not provided binding for this service, the SMF targets the request to the AMF instance discovered via NRF.
8.	A new AMF instance is selected to process the subscription to the UE mobility event notification. The AMF responds with the Subscription Correlation ID, and optionally with a binding indication.
[bookmark: _Toc523749573]6.9.4	Impacts on existing NFs, NF services and interfaces
Editor's note:	This clause describes impacts to existing services and interfaces.
If Service Framework is used together with this solution, the Service Framework must be able to target the service request to the corresponding instance based on the binding information in the service request.
The service interfaces must be able to carry the binding information in the service requests and responses. The service interfaces must be able to indicate the release of the binding.

[bookmark: _Toc523749574]6.9.5	Evaluation
Editor's note:	This clause provides an evaluation of the solution.
The solution provides a mechanism to setup short-living temporary bindings between the instances. It describes a mechanism for the instances to signal the release of the binding. The solution does not describe how to setup and release bindings with Service Instance Sets.

*** Next change ****

6.15	Solution 15: High reliable deployment via the binding information stored at Framework Function
[bookmark: _Toc523749606]6.15.1	Introduction
This solution is to address the Key Issue 4 and in particular how to maintain the bindings between service consumer and respective service producer.
It is based on architecture defined in 6.14 NF/ Service Set based Service Framework. When one Service Instance communicate with other Service Instance, it include the binding ID information, which is generated by the service producer. The Service Consumer instance stores the received binding ID until the UE context is released. The binding information, i.e. the binding between the binding ID and service instance, is stored in a new functional module within the Service Framework where the service producer is deployed. When the binding is changed, e.g., the service instance is scaling in/out or failure, the communication peer does not need to be aware. Thus, the high reliability can be reached if the service instance to be communicated is replaced, e.g. due to failure.
[bookmark: _Toc523749607]6.15.2	High level description
Similar as the definition of the AMF Instance at Rel-15, it is assumed that the service instance is identified by a Service Set ID and Instance pPointer. When the Service Producer Instance is communicated per the Service Consumer request, the Service Producer Instance provides a binding identifier (i.e. binding ID) and returned to the Service Consumer. The Service Consumer use the binding ID to identify the Producer Instance to be contacted. Two types of bindings ID are defined:
-	Service Set ID based, bind to a service set but not limited to a dedicated Instance.
-	Service Set ID and Instance pPointer based. Depending on the meaning of binding ID, it can be bound to a specific service instance but the service instance can be replaced, or only to one dedicated Instance.
The Service Consumer instance stores the received binding ID until the UE context is released, and includes it in the following request targeted to the same Service. When the message reached the Unit where the service producer instance is located, it is routed to a service producer instance based on the binding ID included in the message. The binding between the binding ID and a service producer instance is stored within the Unit, e.g. framework function. The service producer instance Id may change, while the binding IdD remains the same. In that case different transactions may reach to different Service Instance even using the same binding ID.
[bookmark: _Toc523749608]6.15.3	Illustrated procedures
The below procedure illustrate how to exchange the binding ID between the consumer and producer. And how the message is routed based on binding ID.

Figure 6.15.3-1 Binding information stored at the Framework Function and its usage
The binding between service instance and the binding ID is handling within the Unit. As an example, the binding can be established when the service instance is started, e.g. as part of the service instance registration procedure. The Service Framework includes a function module which stores the following information: the Service Set ID, Instance Pointer, IP address. Thus no matter which type binding ID is used by the service instance later, the Function in the Unit, e.g. Framework Function, can always route the message to the service instance. The service instance indicates the assigned binding ID to the Service Framework at the registration procedure, and Service Framework stores the assigned binding ID.
Binding ID exchange between the consumer and producer:
1.	The consumer allocates a binding ID, which is related to the service consumer and used for following transaction request from the peer service instance, and include this information in the message sent to producer. The type of binding ID consumer allocated is per how the consumer prefer following transaction request from peer side communicate with it.
If the following transaction request from peer side is preferred to be handled by any instance within the same service consumer set, the binding ID is Service Set ID based. If the following transaction request from peer side is preferred to be handled by this instance, the binding ID is Service Set ID and Instance Pointer based.
NOTE: the consumer's binding ID is included if the consumer can behave as service producer
2.	The Function in the Unit, e.g. the framework function, selects the producer instance based on the previously stored association of binding ID and instance ID.
3.	The Message 1 is forwarded to the selected producer instance.
4.	The producer instance provides a producer's binding ID to the consumer instance in response message. The type of binding ID allocated is similar as the step 1.
5.	The response message is forwarded to the Consumer. The Consumer stores the received Producer's binding ID as part of the UE context.
Binding ID usage for the following transaction:
6.	Consumer sends message 2, including producer's binding ID received at step 5.
7.	Producer 1 is selected based on producer's binding ID.
8.	Message 2 is forwarded to Producer 1.
Binding information updated:
9.	The binding between the binding ID and Producer 1 is released, e.g. due to producer instance is deregistered.
Message handling after the binding information is released:
10.	The consumer sends Message 3 which include the producer's binding ID provided by Producer 1.
11.	Since there is no producer instance associated with the binding ID, but the binding ID includes the Service Set ID information, a new producer instance is selected based on Producer service set ID.
12.	Message 3 is forwarded to Producer 2.
Editor's note: Producer 2 receives the request with the Pointer of Producer 1. It is FFS how the producer handles this mismatch.
13.	The Producer 2 provides a new producer's binding ID which is associated with producer 2 or this Set.

14.	The response message is forwarded to the Consumer.
Editor's note: Consumer receives the response with the Pointer of Producer 2. It is FFS how the consumer handles this mismatch.

[bookmark: _Toc523749609]6.15.4	Impacts on existing NFs, NF Services and Interfaces
Editor's note: This clause describes impacts to existing services and interfaces. .
[bookmark: _Toc523749610]6.15.5	Evaluation of the Solution
Editor's note:	This clause provides an evaluation of the solution.

*** Next change ****

[bookmark: _GoBack]

*** Next change ****

.

*** End of changes ****

3GPP
SA WG2 TD

oleObject2.bin

[image: image2.png]

[image: image1]
image3.emf
1. Incoming Request#1 from NF/Service consumer nNF Service XNF Service YService FrameworkShare Data Layer Service (e.g., eUDSF)3. SF_Routing_Incoming_Request4a. SF_RoutingReq5a. SF_RoutingReq7c.SF_Reouting4c. SF_Routing5c. SF_Routing7a. SF_RoutingReq8a. SF_Routing_Outgoing2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message6. Process Request for Service4b.Determine Service Producer Endpoint and forwards message5b.Determine Service Producer Endpoint and forwards message7b.Determine Service Producer Endpoint and forwards message8c. SF_Routing_Incoming_Request8b.Determine Service Producer Endpoint and forwards message9. Repeat steps 4-8

Microsoft_Visio_Drawing.vsdx
1. Incoming Request#1 from NF/Service consumer n
NF Service X
NF Service Y
Service Framework
Share Data Layer Service (e.g., eUDSF)
3. SF_Routing_Incoming_Request
4a. SF_RoutingReq
5a. SF_RoutingReq
7c.SF_Reouting
4c. SF_Routing
5c. SF_Routing
7a. SF_RoutingReq
8a. SF_Routing_Outgoing
2. Determine NS Service Producer Endpoint (e.g., through NRF) and forward message
6. Process Request for Service
4b.Determine Service Producer Endpoint and forwards message
5b.Determine Service Producer Endpoint and forwards message
7b.Determine Service Producer Endpoint and forwards message
8c. SF_Routing_Incoming_
Request
8b.Determine Service Producer Endpoint and forwards message
9. Repeat steps 4-8

image4.emf

oleObject3.bin

[image: image2.png]

[image: image1]
image5.emf
ConsumerFramework FunctionProducer 18. Message 2(Producer’s binding ID)9. Unbind10. Message 3 (Producer’s binding ID)Producer 213. Message 3(Producer’s binding ID) 4. Res Message 1 (Producer’s binding ID)Framework Function2. Producer Instance selection5. Res Message 1 (Producer’s binding ID)6. Message 2(Producer’s binding ID)7. select Producer instance based on binding ID11. Binding doesn't exist, select instance based on set ID1. Message 1(Producer’s set ID, Consumer’s binding ID)14. Res Message 3(new Producer’s binding ID) 15. Res Message 3(new Producer’s binding ID) 3. Message 1(Producer’s set ID, Consumer’s binding ID)

Microsoft_Visio_Drawing1.vsdx

Consumer
Framework Function
Producer 1
8. Message 2(Producer’s binding ID)
9. Unbind
10. Message 3 (Producer’s binding ID)
Producer 2
13. Message 3(Producer’s binding ID)
4. Res Message 1 (Producer’s binding ID)
Framework Function
2. Producer Instance selection
5. Res Message 1 (Producer’s binding ID)
6. Message 2(Producer’s binding ID)
7. select Producer instance based on binding ID
11. Binding doesn't exist, select instance based on set ID
1. Message 1(Producer’s set ID, Consumer’s binding ID)
14. Res Message 3(new Producer’s binding ID)
15. Res Message 3(new Producer’s binding ID)
3. Message 1(Producer’s set ID, Consumer’s binding ID)

image1.emf

oleObject1.bin

[image: image1.png]
image2.emf

